
P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 1A 6 J A N U A R Y 1 9 6 4 

Incoherent Inelastic Neutron Scattering and Self-Diffusion 
ROBERT ZWANZIG 

National Bureau of Standards, Washington, D. C. 
(Received 21 August 1963) 

The cross section for incoherent inelastic scattering of neutrons by a many-body system is shown to be re
lated to the real part of a generalized self-diffusion coefficient. The latter quantity is defined as the transport 
coefficient in the extension of Fick's law of diffusion to arbitrary space-time variations of the driving force. 
The derivation is based on the fluctuation-dissipation theorem, in a form given by Kubo, and on a treatment 
of conventional self-diffusion due to Montroll. Previous results, given by Vineyard and by Singwi, Sjolander, 
and Rahman, are shown to be special cases of the present result. 

IT has been shown by Van Hove1 that incoherent 
inelastic neutron scattering is described by the 

frequency and wave-vector dependence of the quantity 

reduces to 

i r 
2T J-« 

dt 

Xe-- < ( exp[ - iK-R(0) ]exp[+ iK-R( / ) ] ) . (I) 

The position of the scattering nucleus at time t is R(£). 
The average is taken over a thermal ensemble at 
temperature T. 

The purpose of this note is to point out an exact and 
remarkably simple relation between S;(K,O;) and the 
generalized self-diffusion coefficient D(K,CO). The latter 
quantity is defined as the transport coefficient appearing 
in the generalization of Fick's law of diffusion to 
arbitrary space-time variations of the driving force, 

j (K,0>) = — D(K,Ctf) • (VC%,a (2) 

Here, J(K,CO) is the (ic,co)th Fourier component of the 
current density of the diffusing species, as a response 
to the (K,co)th Fourier component of the gradient VC of 
the concentration of the diffusing species. 

I t is shown here that the two quantities Si and D are 
related by 

5i(K,«) = [ ) ^ / W ( l - 6 r ^ - ) > . R e D ( K , a ) ) - K . (3) 

(The abbreviation /?= 1/kT is used.) 
The connection between incoherent neutron scatter

ing and self-diffusion has been observed previously. For 
example, Vineyard2 derived 

5 . ( K > a ) ) = = A C 2 Z > / 7 r ( a ) 2 + K 4 Z ) 2) ( 4 ) 

using classical mechanics and an isotropic diffusion 
model. The quantity D is the self-diffusion coefficient 
JD(0,0) in our notation. I t should be noted that Vine-
yard's calculation did not allow for either frequency 
dispersion or spatial dispersion of the self-diffusion 
coefficient. Because of this, one should not place any 
reliance on the extra K dependence coming from the 
denominator of Eq. (4). For small /c, Vineyard's result 

1 L. Van Hove, Phys. Rev. 95, 249 (1954). 
2 G. H. Vineyard, Phys. Rev. 110, 999 (1958). 

Sifcai) —» K2D/WU>2 (5) 

which is in exact agreement with our Eq. (3) in the 
limit of small K and small co. This is the limit in which 
one may safely neglect frequency dispersion and spatial 
dispersion. 

In the limit of small K but arbitrary co, and for an 
isotropic medium, Eq. (3) reduces to 

S,(K,CO) - » [/3fe/7rco2(l-e-P*»yy ReZ>(0,co). (6) 

This agrees with the result found in the same limit by 
Singwi, Sjolander, and Rahman,3 after allowing for 
differences in notation. 

The derivation consists of two parts. First, we use 
straightforward mathematical manipulations to express 
S;(K,CO), as defined by Eq. (1), in terms of a quantity 
Dab(K,a)), defined by Eq. (14). Then, by an independent 
argument, we show that .D0&(K,CO) is the generalized 
self-diffusion coefficient. 

The derivation of Eq. (3) begins with the observation 
that 

J —c 

where 

^ - - < < p ( - K , 0 ) p M ) 

j —c 

^e--<<p(-K,0)p(K,0>, (7) 

p(K,2) = exppK- R(/)3- (8) 

Equation (7) is an identity, provided that the time-
correlation function vanishes fast enough as t —> ± <*>. 
In the present context there is no reason to doubt that 
this happens. 

Next, we use the further identity 

2TT / : 
* ^ - « < P ( - K , 0 ) P ( K , / ) > 

- [ & » / * ( ! - * - ' * • ) ] Reo-foco), (9) 

3 K. S. Singwi, A. Sjolander, and A. Rahman, Inelastic Scattering 
of Neutrons in Solids and Liquids (International Atomic Energy 
Agency, Vienna, 1963), Vol. I, p. 215. 
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where the quantity <r is denned by 

<T(K,O>)= J dte-^j rfX<p(-K,-iftX)p(ic,0). (10) 
Jo Jo 

This identity can be verified easily by expanding in 
energy eigenstates. It also follows directly from 
theorems given by Kubo.4 

Next, we introduce the current-density operator, 

JW = i[(p/»»y i t ,R+e«*-R(p/w)]. (11) 

The momentum of the scattering particle is p and its 
mass is m. The Heisenberg equation of motion for the 
density operator p(ic) is just the law of conservation of 
current density, 

P(K,0 = MC-J(K,0. (12) 

Consequently, <T(K,CO) may be written as 

(7(K,CO)=J$K-D(K,CO)-K. (13) 

Equation (13) introduces the tensor D; its Cartesian 
components Dab are given by 

1 r ft 
Dab(K,a>) = - / dttr^l d\{jh(-K,-iti\)ja(K,t)). 

The desired Eq. (3) is obtained by combining Eqs. (7), 
(8), (9), and (13). 

The rest of the derivation consists in establishing the 

* R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). 
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connection between D(K,OJ) and self-diffusion. This may 
be done conveniently by a slight extension of MontrolPs 
calculation6 of the conventional self-diffusion coefficient, 
22(0,0) in our notation. 

Montroll's procedure is based on the following 
observation. In linear irreversible thermodynamics, the 
driving force for self-diffusion, —kTyC, and any 
externally imposed forces F are additive. Therefore, 
the self-diffusion coefficient can be found by calculating 
the response of the system to an external force. The 
calculation can be performed using Kubo's technique.4 

The interaction of the system with an external field is 
given by the perturbation Hamiltonian 

H' = p(-*)U (*&)*-*»'. (15) 

This supposes that the external field U varies as 
exppfc-R—ut)2. The corresponding force is 

F ( K , « ) = - ( V t f k c o = *Ktf(K,Co)e-™S ( 1 6 ) 

and the response, according to irreversible thermo
dynamics, should be written in the form 

(J(K,C))=-^D(K,CO).F(K,CO), (17) 

where D(K,CO) is the appropriate transport coefficient. 
Application of Kubo's technique leads to Eq. (14) for 
the tensor D. Thus it is correct to identify D(K,W) with 
the generalized self-diffusion coefficient. 

6 E. W. Montroll, in Lectures in Theoretical Physics^ edited by 
W. E. Brittin, B. W. Downs, and J. Downs (Interscience Pub
lishers, Inc., New York, 1961), Vol III, p. 261. 


